ГОСТ 22733-2016

ГРУНТЫ

Метод лабораторного определения максимальной плотности

Soils. Laboratory method for determining of maximum density

Содержание

- 1 Область применения
- 2 Нормативные ссылки
- 3 Термины и определения
- 4 Общие положения
- 5 Оборудование и приборы
- 6 Подготовка к испытанию
- 7 Проведение испытания
- 8 Обработка результатов

Приложение А (рекомендуемое) Принципиальная схема прибора СОЮЗДОРНИИ для стандартного уплотнения грунтов

<u>Приложение Б (рекомендуемое) Журнал испытания грунта методом стандартного</u> уплотнения

Приложение В (рекомендуемое) Образец графического оформления результатов испытания грунта методом стандартного уплотнения

<u>Приложение Г (справочное) Таблица пар чисел влажности w_i и плотности сухого грунта</u>

 w_i для построения линии нулевого содержания воздуха

<u>Приложение Д (справочное) Коэффициенты приведения значений максимальной плотности и оптимальной влажности грунта к значениям, полученным методами Проктора</u>

1 Область применения

Настоящий стандарт распространяется на природные и техногенные дисперсные грунты и устанавливает метод лабораторного определения максимальной плотности сухого грунта и соответствующей ей влажности при исследовании грунтов для строительства.

Стандарт не распространяется на органо-минеральные и органические грунты и грунты, содержащие более 30% частиц крупнее 10 мм.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

<u>ГОСТ 1770-74</u> (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

<u>ГОСТ 5180-2015</u> Грунты. Методы лабораторного определения физических характеристик

<u>ГОСТ 8269.0-97</u> Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

<u>ГОСТ 9147-80</u> Посуда и оборудование лабораторные фарфоровые. Технические условия

<u>ГОСТ 12071-2014</u> Грунты. Отбор, упаковка, транспортирование и хранение образцов <u>ГОСТ 23932-90</u> Посуда и оборудование лабораторные стеклянные. Общие технические условия

ГОСТ 24104-2011* Весы лабораторные. Общие технические требования

ГОСТ 25100-2011 Грунты. Классификация

<u>ГОСТ 29329-92</u> Весы для статического взвешивания. Общие технические требования <u>ГОСТ 30416-2012</u> Грунты. Лабораторные испытания. Общие положения

3 Термины и определения

В настоящем стандарте применены термины по <u>ГОСТ 5180</u>, <u>ГОСТ 12071</u>, <u>ГОСТ 25100</u>, <u>ГОСТ 30416</u>, а также следующие термины с соответствующими определениями:

- 3.1 максимальная плотность (стандартная плотность): Наибольшая плотность сухого грунта, которая достигается при испытании грунта методом стандартного уплотнения.
- 3.2 оптимальная влажность: Значение влажности грунта, соответствующее максимальной плотности сухого грунта.
- 3.3 стандартное уплотнение: Послойное (в три слоя) уплотнение образца грунта с постоянной работой уплотнения.
- 3.4 график стандартного уплотнения: Графическое изображение зависимости изменения плотности сухого грунта от влажности при испытании методом стандартного уплотнения.

4 Обшие положения

4.1 Метод стандартного уплотнения заключается в установлении зависимости плотности сухого грунта от его влажности при уплотнении образцов грунта с постоянной работой уплотнения и последовательным увеличением влажности грунта.

Результаты испытания оформляют в виде графика стандартного уплотнения.

- 4.2 Общие требования к лабораторным испытаниям грунтов, оборудованию, приборам и лабораторным помещениям приведены в <u>ГОСТ 30416</u>.
- 4.3 Для испытания грунта методом стандартного уплотнения используют образцы грунта нарушенного сложения, отобранные из горных выработок (шурфов, котлованов, буровых скважин и т.п.), в обнажениях или в складируемых массивах предполагаемого для использования в сооружениях грунта в соответствии с требованиями <u>ГОСТ 12071</u>.
- 4.4 Число последовательных испытаний грунта при увеличении его влажности должно быть не менее пяти, а также достаточным для выявления максимального значения плотности сухого грунта по графику стандартного уплотнения.
- 4.5 Допустимое расхождение между результатами параллельных определений, полученными в условиях повторяемости, выраженное в относительных единицах, не должно превышать для максимального значения плотности сухого грунта 1,5%, для оптимальной влажности 10%.

^{*} Вероятно, ошибка оригинала. Следует читать: ГОСТ 24104-2001.

Статус документа: Действующий 01.03.2021 08: 40:55

Если расхождения превышают допустимые значения, следует проводить дополнительное испытание.

За результат максимальной стандартной плотности принимают наибольшее значение плотности сухого грунта и соответствующую ей величину оптимальной влажности.

5 Оборудование и приборы

- 5.1 В состав установки для испытания грунта методом стандартного уплотнения входят:
- устройство для механизированного или ручного уплотнения грунта падающим грузом с постоянной высоты (типа прибора СОЮЗДОРНИИ);
 - форма для образца грунта.

Принципиальная схема прибора СОЮЗДОРНИИ для стандартного уплотнения грунтов приведена в приложении A.

Примечание - Допускается применять установки других конструкций при условии проведения сопоставительных испытаний для каждой разновидности грунта.

5.2 Конструкция устройства для уплотнения грунта должна обеспечивать падение груза массой (2500±25) г по направляющей штанге с постоянной высоты (300±3) мм на наковальню диаметром (99,8 - 0,2) мм. Отношение массы груза к массе направляющей штанги с наковальней должно быть не менее 1,5.

Примечание - Для механизированных устройств для уплотнения грунта допускается размер наковальни диаметром (99,6 - 0,2) мм.

- 5.3 При механизированном способе уплотнения в состав устройства должны входить механизм подъема груза на постоянную высоту и счетчик числа ударов.
- 5.4 Форма для образца грунта должна состоять из цилиндрической части, поддона, зажимного кольца и насадки.
- 5.5 Цилиндрическая часть формы должна иметь высоту ($127,4\pm0,2$) мм и внутренний диаметр (100,0+0,3) мм. Временное сопротивление металла цилиндрической части формы должно быть не менее 400 МПа. Цилиндрическая часть формы может быть цельной или состоящей из двух разъемных секций.
- 5.6 Установка должна размещаться на жесткой горизонтальной плите (бетонной или металлической) массой не менее 50 кг. Отклонение поверхности от горизонтали должно быть не более 2 мм/м.
- 5.7 При испытании грунта методом стандартного уплотнения применяют следующие средства измерений, вспомогательное оборудование и инструмент:
- весы для статического взвешивания на 2 5 кг среднего класса точности по $\overline{\Gamma OCT}$ 29329;
 - весы лабораторные на 0.2 1.0 кг 4-го класса точности по <u>ГОСТ 24104</u>;
 - линейка металлическая длиной не менее 300 мм по ГОСТ 427;
- цилиндры мерные вместимостью 100 мл и 50 мл ценой деления не более 1 мл по ГОСТ 1770;
 - чашки металлические для испытаний вместимостью 5 л;
 - стаканчики весовые (алюминиевые бюксы) ВС-1 с крышками;
 - устройство растирочное или ступка фарфоровая с пестиком по <u>ГОСТ 9147</u>;
 - шкаф сушильный;
 - набор сит с диаметром отверстий 10 и 5 мм;
 - эксикатор Э-250 по <u>ГОСТ 23</u>932;

- шпатель металлический;
- нож лабораторный с прямым лезвием длиной не менее 150 мм;
- штангенциркуль по ГОСТ 166.
- 5.8 Лабораторные весы должны обеспечивать взвешивание грунта и формы в процессе испытания с погрешностью ± 1 г.
- 5.9 Средства измерений должны пройти поверку или калибровку, а испытательное оборудование должно быть аттестовано в установленном порядке.

6 Подготовка к испытанию

- 6.1 Подготовка пробы грунта
- 6.1.1 Масса образца грунта нарушенного сложения при естественной влажности, необходимая для подготовки пробы грунта, должна быть не менее 10 кг при наличии в грунте частиц крупнее 10 мм и не менее 6 кг при отсутствии частиц крупнее 10 мм.
- 6.1.2 Представленный для испытания образец грунта нарушенного сложения высушивают при комнатной температуре или в сушильном шкафу до воздушно-сухого состояния. Высушивание в сушильном шкафу несвязных минеральных грунтов допускается проводить при температуре не более 100°C, связных не более 60°C. В процессе сушки грунт периодически перемешивают.
- 6.1.3 Размельчают агрегаты грунта (без дробления крупных частиц) в растирочном устройстве или в фарфоровой ступке.
- m_p) и просеивают через сита с отверстиями диаметром 10 мм и 5 мм. При этом более 70% всей массы грунта должно пройти через сито с отверстиями диаметром 10 мм.
- 6.1.5 Взвешивают отсеянные крупные частицы (m_k), не прошедшие через сито с отверстиями диаметром 5 мм.

Дальнейшее испытание проводят с пробой грунта, прошедшего через сито 5 мм.

- 6.1.6 Из отсеянных крупных частиц грунта отбирают пробы для определения их влажности w_k и средней плотности частиц ρ_k по <u>ГОСТ 8269.0</u>.
- 6.1.7 Из грунта, прошедшего через сито, отбирают пробы для определения его влажности в воздушно-сухом состоянии $w_{\rm g}$ по <u>ГОСТ 5180</u>.
- 6.1.8 Вычисляют содержание в грунте крупных частиц К, %, с точностью 0,1% по формуле

$$K = \frac{m_k (1+0.01w_g)}{m_p (1+0.01w_k)} \cdot 100$$
(1)

где $m_{\vec{k}}$ - масса отсеянных крупных частиц, г;

 $w_{\rm g}$ - влажность просеянного грунта в воздушно-сухом состоянии, %;

 m_p - масса образца грунта в воздушно-сухом состоянии, г;

 w_k - влажность отсеянных крупных частиц, %.

6.1.9 Отбирают из просеянного грунта методом квартования пробу грунта для

испытания (
$$m_p^{\prime}$$
) массой 2500 г.

Допускается проводить весь цикл испытаний с использованием одной отобранной пробы.

При испытании грунтов, содержащих частицы, легко разрушающиеся при уплотнении, отбирают несколько отдельных проб. В этом случае каждую пробу испытывают только один раз.

- 6.1.10 Помещают отобранную пробу в металлическую чашку для испытаний.
- 6.1.11 Рассчитывают количество воды Q, г, для до увлажнения отобранной пробы до влажности первого испытания по формуле

$$Q = \frac{m_p'}{1 + 0.01 w_g} \cdot 0.01 (w_1 - w_g),$$
(2)

где $m_p^{\,\prime}$ - масса отобранной пробы, г;

 w_1 - влажность грунта для первого испытания, назначаемая по таблице 1, %;

 $w_{\rm g}$ - влажность просеянного грунта в воздушно-сухом состоянии, %.

Таблина 1

Грунты	Влажность w_1 грунта для первого испытания, $\%$
Песок гравелистый, крупный и средней	4
крупности Песок мелкий и пылеватый	6
Супесь, суглинок легкий	6 - 8
Суглинок тяжелый, глина	10 - 12

- 6.1.12 В отобранную пробу грунта вводят рассчитанное количество воды за несколько приемов, перемешивая грунт металлическим шпателем.
- 6.1.13 Переносят пробу грунта из чашки в эксикатор или плотно закрываемый сосуд и выдерживают ее при комнатной температуре не менее 2 ч для несвязных грунтов и не менее 12 ч для связных грунтов.
 - 6.2 Подготовка установки для испытания
 - 6.2.1 Взвешивают цилиндрическую часть формы (m_c).
 - 6.2.2 Устанавливают цилиндрическую часть формы на поддон, не зажимая ее винтами.
- 6.2.3 Устанавливают зажимное кольцо на верхний бортик цилиндрической части формы.
- 6.2.4 Зажимают цилиндрическую часть формы попеременно винтами поддона и
- 6.2.5 Протирают внутреннюю поверхность формы ветошью, смоченной керосином, минеральным маслом или техническим вазелином.
 - 6.2.6 Устанавливают собранную форму на плиту основания.
- 6.2.7 Проверяют соосность направляющей штанги и цилиндрической части формы и свободный ход груза по направляющей штанге.

7 Проведение испытания

7.1 Испытание проводят, последовательно увеличивая влажность грунта испытываемой пробы. При первом испытании влажность грунта должна соответствовать значению, установленному в таблице 1. При каждом последующем испытании влажность грунта следует увеличивать на 1% - 2% для несвязных грунтов и на 2% - 3% - для связных грунтов.

Количество воды для увлажнения испытуемой пробы определяют по формуле (2), принимая в ней за $w_{\rm g}$ и $w_{\rm l}$ влажности при предыдущем и очередном испытаниях соответственно.

- 7.2 Испытание пробы грунта проводят в следующем порядке:
- переносят пробу из эксикатора в металлическую чашку и тщательно перемешивают;
- загружают в собранную форму из пробы слой грунта толщиной 50 60 мм и слегка уплотняют рукой его поверхность. Проводят уплотнение 40 ударами груза по наковальне с высоты 300 мм, зафиксированной на направляющей штанге. Аналогичную операцию проводят с каждым из трех слоев грунта, последовательно загружаемых в форму. Перед загрузкой второго и третьего слоев поверхность предыдущего уплотненного слоя взрыхляют ножом на глубину 1 2 мм. Перед укладкой третьего слоя на форму устанавливают насадку;
- после уплотнения третьего слоя снимают насадку и срезают выступающую часть грунта заподлицо с торцом формы. Толщина выступающего слоя срезаемого грунта должна быть не более 10 мм.

Примечание - Если выступающая часть грунта превышает 10 мм, необходимо выполнить дополнительное число ударов из расчета один удар на 2 мм превышения.

- 7.3 Образующиеся после зачистки поверхности образца углубления вследствие выпадения крупных частиц заполняют вручную грунтом из оставшейся части отобранной пробы и выравнивают ножом.
- 7.4 Взвешивают цилиндрическую часть формы с уплотненным грунтом (m_i) и вычисляют плотность грунта $^{\rho_i}$, $^{\Gamma/\text{cm}^3}$ с точностью 0,01 $^{\Gamma/\text{cm}^3}$ по формуле

$$\rho_i = \frac{m_i - m_c}{V},\tag{3}$$

 m_i - масса цилиндрической части формы с уплотненным грунтом, г;

- масса цилиндрической части формы без грунта, г;

V - вместимость формы, см³.

7.5 Извлекают из цилиндрической части формы уплотненный образец грунта. При этом из верхней, средней и нижней частей образца отбирают пробы для определения влажности грунта w_i - по <u>ГОСТ 5180</u>.

Извлеченный из формы грунт присоединяют к оставшейся в чашке части пробы, измельчают и перемешивают. Размер агрегатов не должен превышать наибольшего размера частиц испытуемого грунта.

Увеличивают влажность пробы согласно <u>7.1</u>. После добавления воды грунт тщательно перемешивают, накрывают влажной тканью и выдерживают не менее 15 мин для несвязных грунтов и не менее 30 мин для связных грунтов.

- 7.6 Второе и последующие испытания грунта следует проводить в соответствии с 7.2-7.5.
- 7.7 Испытание следует считать законченным, когда с повышением влажности пробы при последующих двух испытаниях происходит последовательное уменьшение значений массы и плотности уплотняемого образца грунта, а также когда при ударах грузом происходит отжатие воды или выделение разжиженного грунта через соединения формы.

Примечание - Уплотнение однородных по гранулометрическому составу и дренирующих грунтов прекращают после появления воды в соединениях формы независимо от числа ударов при уплотнении образца.

7.8 В процессе испытания ведут журнал, форма которого приведена в приложении Б.

8 Обработка результатов

8.1 По полученным в результате последовательных испытаний значениям плотности и влажности грунта вычисляют значения плотности сухого грунта ρ_{di} , г/см³, с точностью 0,01 г/см³ по формуле

$$\rho_{di} = \frac{\rho_i}{1 + 0.01 w_i} \,, \tag{4}$$

где ρ_i - плотность грунта, г/см³;

 w_i - влажность грунта при очередном испытании, %.

8.2 Строят график зависимости изменения значений плотности сухого грунта от влажности (приложение В). По наивысшей точке графика для связных грунтов находят

значение максимальной плотности ($^{
ho_{d \ max}}$) и соответствующее ему значение оптимальной влажности ($^{W_{opt}}$).

8.3 Для несвязных грунтов график стандартного уплотнения может не иметь заметно выраженного максимума. В этом случае значение оптимальной влажности принимают на

 w_i , при которой происходит отжатие воды. Значение максимальной плотности принимают по соответствующей ей ординате. При этом принимают 1,0% для песков гравелистых, крупных и средней крупности; 1,5% - для мелких и пылеватых песков.

Для однородных дренирующих песчаных грунтов с ярко выраженным максимумом на кривой стандартного уплотнения в узком диапазоне влажности за максимальную стандартную плотность следует принимать значение плотности слева от максимума при

влажности на 1% меньше для песков гравелистых, крупных и средней крупности на 1,5% - для мелких и пылеватых. За оптимальную влажность - соответствующее им значение.

(С поправкой)

8.4 Если в грунте содержались крупные частицы, которые перед испытанием согласно $\underline{6.1.5}$ были удалены из пробы, то для учета влияния их состава корректируют установленное согласно $\underline{8.2,\,8.3}$ значение максимальной плотности сухого грунта по формуле

$$\rho'_{d\max} = \frac{\rho_{d\max}\rho_k}{\rho_k - 0.01K(\rho_k - \rho_{d\max})},$$
(5)

где $^{
ho_k}$ - средняя плотность крупных частиц грунта, г/см³; K - содержание крупных частиц в грунте, %.

Значение оптимальной влажности грунта w_{opt}^{\prime} , %, определяют по формуле

$$w'_{opt} = 0.01 \ w_{opt} (100 - K)$$
 (6)

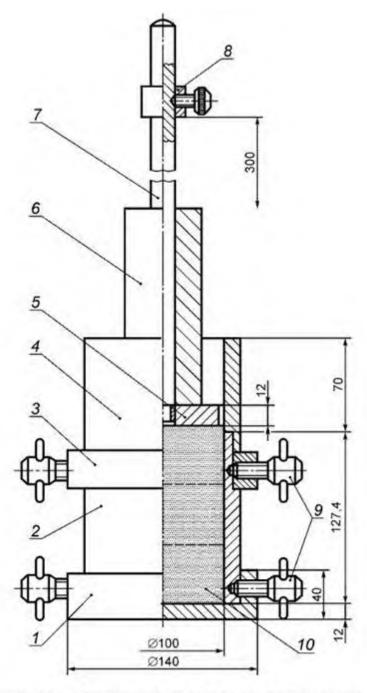
8.5 Для контроля правильности испытания связных грунтов строят линию нулевого содержания воздуха, показывающую изменение плотности сухого грунта от влажности при полном насыщении его пор водой.

Пары чисел ρ_{di} и w_i для построения линии нулевого содержания воздуха при плотности частиц грунта ρ_{5} определяют, задаваясь значениями влажности, по формуле

$$\rho_{di} = \frac{\rho_s}{1 + 0,01 w_i \, \rho_s \, \frac{1}{\rho_w}} \tag{7}$$

где $^{
ho_5}$ - плотность частиц грунта, определяемая по <u>ГОСТ 5180,</u> г/см³; $^{
ho_W}$ - плотность воды, равная 1 г/см³.

Допускается принимать пары чисел ρ_{di} и w_i по приложению Γ .


Нисходящая часть графика стандартного уплотнения не должна пересекать линию нулевого содержания воздуха.

8.6 Линию нулевого содержания воздуха следует строить в диапазоне влажности от w_{opt} - 2% до влажности w_i , на 1% - 2%, превышающую влажность, при которой было завершено испытание.

При необходимости сравнения или приведения значений максимальной плотности и оптимальной влажности грунта к значениям, полученным методами Проктора, допускается использовать переходные коэффициенты, приведенные в приложении Д.

Приложение А (рекомендуемое)

Принципиальная схема прибора СОЮЗДОРНИИ для стандартного уплотнения грунтов

1 — поддон; 2 — разъемная форма; 3 — зажимное кольцо; 4 — насадка; 5 — наковальня; 6 — груз массой 2,5 кг; 7 — направляющая штанга; 8 — ограничительное кольцо; 9 — зажимные винты; 10 — образец грунта

Рисунок А.1

Приложение Б (рекомендуемое)

Журнал испытания грунта методом стандартного уплотнения

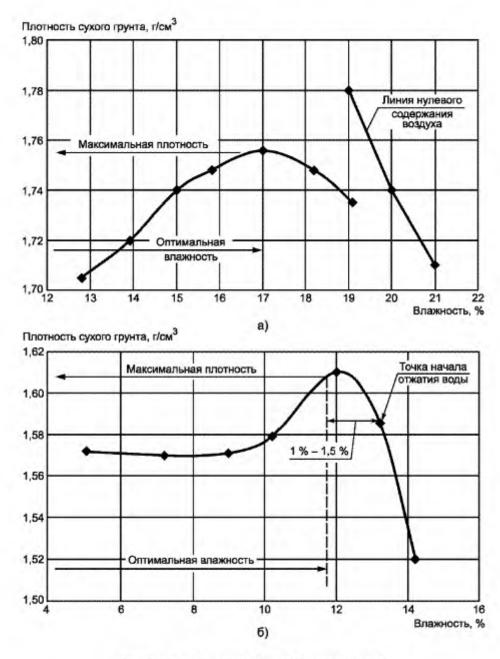

Объект		
Место отбора грунта		
Глубина отбора грунта, м	, мощность слоя грунт	а, м
Разновидность грунта		
Дата отбора		
Масса пробы грунта, $^{\it m_p}$, г _		
Данные по остатку на сите ча	астиц (после просеивания пробы):	
а) масса крупных частиц $^{m_{\overline{\chi}}}$,		
б) влажность крупных части		
в) средняя плотность крупны	іх частиц ρ_k , г/см ³	
г) содержание крупных части	иц в грунте К, %	
Влажность прошедшего чере	ез сито грунта W g , %	
Масса отобранных для испыт	ганий проб грунта $^{m_{p}}$, кг	
Максимальная плотность сух	кого грунта ^{р_{а тах} , г/см³}	
Оптимальная влажность грун	нта ^W opt , %	
Максимальная плотность сух	кого грунта с учетом частиц	
крупнее 5 мм $\rho_{d max}^{\prime}$, г/см ³		
Оптимальная влажность сухо	ого грунта с учетом частиц	
крупнее 5 мм ^W opt , %		
Дата испытания	(начало)	(окончание)

Таблица Б.1

Определение плотности				Определение влажности					
Масса, г			Плотн	№		Влажн			
фо	формы с	уплотнен	ость	стаканчика	пустог	стакан	стакан	абсолю	
ОМЫ	уплотненным	ного грунта	грунта	весового	0	чика с	чика с	тная	
m_c	m,	$m_i - m_r$	$, \Gamma/cm^3$		стаканчика	влажным	сухим		
грунтом "1		(по			грунтом	грунто			
			7.4)				M		
2	3	4	5	6	7	8	9	10	

Приложение В (рекомендуемое)

Образец графического оформления результатов испытания грунта методом стандартного уплотнения

а) — для связных грунтов; б) — для несвязных грунтов

Масштаб графиков: по горизонтали 1 см — 1 % для w; по вертикали 1 см — 0,02 г/см 3 для ρ_d .

Рисунок В.1

Приложение Г (справочное)

Таблица

пар чисел влажности w_i и плотности сухого грунта ρ_{di} для построения линии нулевого содержания воздуха

Таблица Г.1

Влажность w_i , %	Плотность сухого грунта ρ_{di} , $\Gamma/\text{см}^3$, при плотности частиц грунта ρ_{s}					
70						
	2,58	2,65	2,69	2,70	2,74	
2	2,45	2,64				
3	2,40	2,45				
4	2,33	2,40				
5	2,29	2,34				
6	2,23	2,29				
7	2,16	2,23				
8	2,14	2,19				
9	2,09	2,14				
10	2,05	2,09	2,11	2,13	2,15	
11	2,01	2,05	2,07	2,08	2,11	
12	1,97	2,01	2,03	2,04	2,06	
13	1,93	1,97	1,99	2,00	2,02	
14	1,90	1,93	1,95	1,96	1,98	
15	1,86	1,90	1,91	1,92	1,94	
16	1,83	1,86	1,88	1,89	1,91	
17	1,79	1,83	1,84	1,85	1,87	
18	1,76	1,80	1,81	1,82	1,83	
19	1,73	1,76	1,78	1,78	1,80	
20	1,70	1,73	1,74	1,75	1,77	
21	1,67	1,70	1,71	1,73	1,74	
22	1,65	1,67	1,69	1,69	1,71	
23	1,62	1,65	1,65	1,66	1,68	
24	1,60	1,62	1,63	1,64	1,65	
25	1,57	1,59	1,60	1,61	1,63	
26	1,54	1,57	1,58	1,59	1,60	
27	1,52	1,54	1,55	1,56	1,57	
28	1,50	1,52	1,53	1,54	1,55	
29	1,48	1,50	1,51	1,51	1,53	
30	1,45	1,48	1,49	1,49	1,50	

Примечание - Плотность частиц грунта $\rho_{\mathfrak{s}}$ определяют по <u>ГОСТ 5180</u> или принимают в зависимости от разновидности грунта.

Приложение Д (справочное)

Коэффициенты приведения значений максимальной плотности и оптимальной влажности грунта к значениям, полученным методами Проктора

Таблица Д.1

Метод испытания	Разновидность грунта							
грунта	Песок		Супесь		Суглинок		Глина	
	$\rho_{d max}$	w_{opt}	$\rho_{d max}$	w_{opt}	$\rho_{d max}$	w_{opt}	ρ_{dmax}	w_{opt}
Метод Проктора стандартный (по ASTM D698)	1,00	1,00	0,99	1,02	0,96	1,03	0,97	1,02
Метод Проктора модифицированный (по ASTM D1557)	1,02	0,87	1,05	0,84	1,06	0,85	1,06	0,88

Примечание - Приведение значений максимальной плотности и оптимальной влажности для основных разновидностей грунтов, определяемых методом стандартного уплотнения, к значениям, полученным методами Проктора, осуществляют путем умножения на соответствующие коэффициенты, приведенные в настоящей таблице.